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Abstract. We decompose cross-sections of observed belief revisions from the Survey of
Professional Forecasters as if they can be explained by individual and common signals.
We define the common signal as the single signal that explains the maximum amount of
belief revisions across forecasters. Individual signals explain the residual belief revisions
unaccounted for by the common signal. On average, individual information account for more
of the observed belief revisions than common information, but there is large cross-sectional
heterogeneity with some forecasters relying more on common than individual information.
Inflation volatility, perceived stock market volatility and a high risk of recession are all
associated with increased informativeness of signals. When excluding the COVID pandemic
period, the cyclicality of signal informativeness is most pronounced in individual signals.
The COVID pandemic is associated with a large increase in the informativeness of common
signals across all variables.

1. Introduction

Decisions taken under uncertainty can be improved upon by having more information and
how, when, and for what purposes economic agents acquire information is the subject of a
large and active theoretical literature. From this literature, we know that information that
is common to many agents is more likely to affect economic aggregates and that whether
information is private or public is of particular importance in strategic environments.1 In
spite of these important distinctions, there is very little empirical work studying the rela-
tive importance of individual and common information acquisition outside highly structural
models. In this paper we aim to make two contributions to remedy this short-coming. First,
we propose a method that allows us to extract individual and common information from
repeated fixed-event probability forecasts. Second, we demonstrate how the method can
be used to ask and answer new questions about the empirical properties of individual and
common information.

The proposed procedure can be applied whenever we can observe a cross-section of proba-
bility forecasts about a fixed event over time. It contains two steps. In the first step, we find
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the single signal that, if observed by all forecasters, can explain the maximum amount of the
cross-section of belief revisions. This signal is defined as the common signal. In the second
step, we invert Bayes rule to extract the implied individual signal for each forecaster so that
when combined with the common signal, the two types of signals completely account for the
observed cross-section of belief revisions. The method imposes relatively weak assumptions,
namely that forecasters update their beliefs using Bayes rule. We impose neither that the
observed beliefs are rational, follow a particular parametric functional form, nor that the
information structure is stable over time.2

It is important to note here that we extract the common component of belief revisions as
if it is completely explained by a single commonly observed signal. In practice, the common
component in belief revisions may be influenced by multiple common signals observed within
the period, or as we will show later, by the presence of a common component in privately ob-
served signals. In spirit, the method is thus akin to extracting the first-principal component
from a cross-section of belief revisions and then labeling the remaining belief revisions as
idiosyncratic. The latter are thus modeled as if it is driven by a single individual signal for
each forecaster. It is only under special circumstances that the extracted signals correspond
exactly to a theoretical model object or variable. Similarly to principal components, the
extracted signals are thus defined by their statistical properties and not by an underlying
economic model structure.

In strategic settings, it is also important to distinguish between common information
and public information, where the latter is not only known by all agents but also common
knowledge. Our approach does not allow us to distinguish between common and public
information. Since all public information is also common information, but not vice versa,
we use the weaker terms common information and common signals throughout.

The proposed method allows us to measure how the perceived informativeness of individual
and common sources of information vary over time. As shown in Bassetti, Casarin and Del
Negro (2022), at short horizons, more precise beliefs correspond to a higher actual precision of
forecasts. When we apply the method to probability forecasts from the Survey of Professional
Forecasters (SPF), we find that (i) individual information is on average more informative
than common information, and account for more of the observed belief revisions, (ii) there is
a large cross-sectional heterogeneity in signal informativeness, and the fraction of forecasters
that observe individual signals that are more informative than the common signal ranges
from 0.1 - 0.9, depending on variable and measure of informativeness, (iii) volatile inflation
is associated with more informative signals (iv) the precision of signals tends to increase
when the probability of a recession is high, or when the perceived volatility of stock prices
is high.

To understand how the method works, it is helpful to first delve a little bit into the
structure of the SPF. The administrators of the survey collect both point and probability
forecasts and for this study we make use of the latter. The SPF asks respondents to assign
probabilities to different ranges (“bins”) of outcomes for GDP growth, the GDP deflator,
Personal Consumption Expenditure (PCE) inflation, Consumer Price Index (CPI) inflation

2Giacomini, Skreta and Turen (2020) provides empirical support for the assumption that forecasters use
Bayes rule to update their beliefs.
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and unemployment. The bins are pre-specified by the SPF and occasionally redefined due to
changes in the long term means and variances of the variables. Both point and probability
forecasts are collected every quarter. However, unlike the point forecasts, the probability
forecasts are only elicited about calendar year outcomes, i.e. they are fixed-event rather than
fixed-horizon forecasts.

The fixed-event nature of the probability forecasts allows us to study how forecasters revise
their beliefs about a given event over time. In particular, since calendar year forecasts are
collected every quarter and for multiple calendar years at each survey wave, we can observe
how the cross-section of beliefs about a given calendar year changes quarter-to-quarter. For
instance, survey respondents are asked to provide a probability forecasts for CPI inflation
for the calendar year 2015 every quarter from 2012:Q1 to 2015:Q4. Hence, we have 16
cross-sections of probability forecasts about CPI inflation for the calendar year 2015 and 15
observed cross-sections of revisions to these beliefs.

We use this structure to estimate the relative importance of common and individual infor-
mation in the observed belief revisions. The basic idea is the following. For a given change in
a forecaster’s probability forecast, we can invert Bayes rule to back out a signal that would
justify the change in his beliefs from t − 1 to t. If done individually for each forecaster, we
would end up with one signal for each forecaster at each point in time. However, we want
to separate out the component of each forecaster’s belief revision that is due to common
information from the component that is due to individual information. To do so, we ask
What is the single signal that, if observed by all forecasters, can explain the most of the belief
revisions of all the forecasters? We call this signal the common signal. To make the proce-
dure operational, we find the signal that minimizes the Kullback-Leibler divergence between
the observed cross-section of beliefs in period t and the hypothetical cross-section of beliefs
forecasters would have had, had they updated their prior based only on the common signal.

The extracted common signal will not by itself in general be enough to completely account
for how every forecaster updates his or her beliefs. However, we can back out an implied
individual signal that when combined with the observed prior and the common signal, com-
pletely account for a given forecaster’s observed belief revision.

To study the importance of individual and common information and how it varies over
time, we propose three measures of signal informativeness. The belief update measure cap-
tures how large a revision of an agent’s belief a signal leads to. While a natural measure of a
signal’s importance, the belief update measure depends on the prior of the agent and not only
on the properties of the signal. The negative entropy measure is independent of forecasters’
priors and measures how much a signal reduces the entropy over possible outcomes from a
starting point of maximum entropy. The belief update and entropy measures are indepen-
dent of the numerical values associated with different outcomes and are thus not suited to
measure the precision of a signal. However, the precision measure of a signal, computed as
the inverse of the variance of the hypothetical posterior implied by combining the signal with
a uniform prior, allows us to evaluate the perceived precision of signals. Importantly, the
three measures do not necessarily comove positively. For instance, a signal that suggests that
tail events are more likely may cause a large increase in a the belief update measure, but a
large decrease in the precision measure. The procedure also allow for that relatively precise
individual and common signals may increase posterior uncertainty if they disagree about
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the conditional mean of an outcome. The precision measure of the signal informativeness
of the two types of signals are thus not simply a proxy for changes in posterior uncertainty.
This also distinguishes the method from studies that use a fully parametric linear-Gaussian
statistical model to make inference about agents beliefs and signals, i.e. Barillas and Nimark
(2017, 2019) and Nimark (2014). In such models, all signal realizations about a fixed event
weakly decreases posterior uncertainty, even when signals individually imply very different
conditional means .

We document several empirical regularities about the extracted signals. First, individual
signals are for most agents more informative than the public signals, in the sense that the
individual signals account for more of the observed belief revisions and are perceived to be
more precise. This is true in spite of the fact that the procedure used to extract the common
signal maximizes the importance of the common signals. While the average informativeness
of individual signals is higher than that of the common signal, there is substantial cross-
sectional heterogeneity. The fraction of forecasters that observe individual signals that are
more informative than the common signal ranges from 0.1 - 0.9, depending on variable and
measure of informativeness. For all variables and measures, except the precision measure
for signals about unemployment and GDP growth, the common signals are less informative
than the individual signals for a majority of forecasters. Again, this is so in spite of the
procedure maximizing the informativeness of the common signal.

For some macro variables, the outcomes of the underlying variable that is being forecast
covary with the informativeness of the signals. For example, volatile inflation tends to
be associated with both individual and common signals becoming more precise. This is
consistent with theories of agents rationally choosing how much attention to pay to inflation,
as analyzed in Pfauti (2023) and discussed by Federal Reserve chair Jerome Powell in a recent
speech.3 High levels of unemployment tend to be associated with more precise individual
and common signals. Interestingly, when unemployment is increasing, both individual and
common signals about unemployment tend to be less precise. One possible interpretation of
this result is that in a recession, when unemployment increases rapidly, there is an increased
uncertainty about how high unemployment will go before it peaks.

Signal informativeness are almost uniformly positively correlated with the Philadelphia
Fed’s Anxious Index, which describes forecasters’ subjective probability of a recession. Per-
haps unsurprisingly, this is most significantly so for the common signals about unemployment
and GDP growth. A similar pattern holds for the correlations between the measures of sig-
nal informativeness and the VIX index from the Chicago Board Options Exchange, with
the addition that the correlation between informativeness of the individual signals and CPI
inflation is stronger for the VIX than for the Anxious Index. These findings suggest that
in times of either increased probability of a recession, or when there is a high level of per-
ceived uncertainty about the stock market, the incentives to acquire information by the
survey participants may be particularly strong. The latter is consistent with the mecha-
nisms explored in Song and Stern (2020), Flynn and Sastry (2022) and Chiang (2022), who

3In his August 26, 2022 speech on Monetsary Policy and Price Stability, Federal Reserve chair Jerome
Powell said “When inflation is persistently high, households and businesses must pay close attention and
incorporate inflation into their economic decisions. When inflation is low and stable, they are freer to focus
their attention elsewhere.”.



INDIVIDUAL AND COMMON INFORMATION 5

all argue that firms have a stronger incentive to acquire information in bad times. Flynn
and Sastry (2022) further argue that this fact can explain why we observe asymmetric busi-
ness cycles with state-dependent dynamics. The evidence here is also consistent with the
empirical findings in Song and Stern (2020) and Flynn and Sastry (2022) who both use a
text-based approach to measure firms’ attention to macroeconomic variables and find it to
be counter-cyclical.

There exists a large empirical literature studying the Survey of Professional Forecasters.
One strand of this literature has focused on the accuracy of the forecasts, and in particular
their accuracy relative to alternative econometric forecasting models, e.g. Zarnowitz (1979),
Zarnowitz and Braun (1993), Diebold, Tay, and Wallis (1997), Clements (2006, 2018), Engel-
berg, Manski and Williams (2009) and Kenny, Kostka and Masera (2014). A second strand
has studied how to best combine individual survey forecasts to increase forecast accuracy,
e.g. Bonham and Cohen (2001) and Genre, Kenny, Meyler and Timmermann (2013). A
third strand has focused on testing theories of expectations formation, including the rational
expectations hypothesis, e.g. Zarnowitz (1985), Keane and Runkle (1990), Bonham and
Dacy (1991), Laster, Bennett and Geoum (1999) and Coibion and Gorodnichenko (2012,
2015).

Most of the literature using or studying the SPF focuses on the point forecasts, which
are available for a larger set of macro variables. Some exceptions that do make use of
the probability forecasts include Diebold, Tay and Wallis (1997), Clements (2006), Kenny,
Kostka and Masera (2014), Rossi, Sekhposyan, and Soupre (2016), Clements (2018), Ganics,
Rossi, and Sekhposyan (2020), Bassetti, Casarin, and Del Negro (2022). These studies mostly
focus on the the accuracy of the forecasts. Rossi et al (2016) decompose SPF probability
forecasts into “Knightian uncertainty” and “risk” components, while Ganics et al (2020)
propose a method to construct fixed-horizon probability forecasts from fixed-event forecasts.4

The next section describes the structure of the probability forecasts in the SPF. Section 3
proposes a procedure to extract individual and common signals from a cross-section of belief
revisions. Section 4 characterizes the estimated common and individual information compo-
nents and shows how they map into alternative information structures. Section 5 proposes
three measures of signal informativeness and Section 6 presents the empirical results.Section
7 concludes.

2. The structure of the SPF probability forecast data

The Survey of Professional Forecasters (SPF) contains quarterly forecasts from practi-
tioners in industry, Wall Street, commercial banks and academic research centers about key
macroeconomic variables. Since 1990 it has been administered by the Federal Reserve Bank
of Philadelphia who took over the survey from the American Statistical Association and the
National Bureau of Economic Research. All participants produce forecasts as part of their

4Rossi et al (2016) assume that there exists an objective “correct” probability distribution over future
outcomes and interpret dispersion of distributions across forecasters as evidence of Knightian uncertainty.
Here, we interpret dispersion of beliefs across forecasters as arising from differences in information sets.
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current jobs. The respondents are anonymous to users of the survey, but individual forecast-
ers can be tracked over time through an id number.5 The SPF collects both point forecasts

Figure 2.1. Average density forecast for CPI, PCE, unemployment, GDP
price deflator and GDP growth. Dashed horizontal lines indicate bin bound-
aries, vertical solid lines indicate date of change for bin definitions.

and probability forecasts. The point forecasts have been used widely to study properties
of expectations formation and as a benchmark for evaluating statistical forecasting models
and procedures. The probability forecasts, like the point forecasts, are collected every quar-
ter. However, the SPF only elicit probability forecasts for a subset of the macro variables
that they elicit point forecasts for, and all probability forecasts are fixed-event rather than
fixed-horizon forecasts.

5For a detailed description of the survey and how it has changed over time, see Croushore (1993) and
Croushore and Stark (2019).
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The SPF currently collects probability forecasts about the GDP growth rate, the GDP
deflator inflation, CPI inflation, PCE inflation and the unemployment rate. The longest
sample is available for the GDP growth rate and the GDP deflator inflation, starting in
1968:Q4. However, until 1981:Q3, respondents were only asked to provide probability fore-
casts for the current calendar year. Since 1981:Q4 they have been asked to also provide
probability forecasts for the next calendar year, and since 2009:Q2 they have been asked to
forecast the next three calendar years in addition to the current one. Probability forecasts
for CPI inflation and PCE inflation have been included in the survey since 2007:Q2 and
probability forecasts for unemployment were added in 2009:Q2.

The probability forecasts for the variables added since 2007 include forecasts for the current
year, as well as forecasts for the next three calendar years. Respondents are asked to assign
probabilities to ranges (“bins”) of different outcomes, where the intervals defining each bin is
predefined by the administrators of the survey. The definitions of the bins have occasionally
been changed to reflect that the high-probability ranges of the macro variables have changed.
The survey responses and the bin definitions are illustrated in Figure 2.1 where we have
plotted the average probability forecasts for the next calendar year outcome of the five
macroeconomic variables. The x-axis denotes the quarter when the forecast was made. The
y-axis denotes the outcomes and horizontal dotted lines indicate bin boundaries. A vertical
line indicates a date when a redefinition of the bins occurred. These redefinitions have been
motivated by either a persistent change in the mean or variance of the probability forecasts
or, in the case of the redefinitions of the bins for unemployment and GDP growth during
2020, to address an abrupt change in the plausible range of outcomes. When extracting a
signal based on updates across a bin change, we convert each distribution into the coarsest
common bin definition before extracting the signal.
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Figure 2.2. Illustration of how the beliefs of Forecaster #570 about infla-
tion in 2021 evolved over 2020. A given color indicates beliefs reported in a
given quarter, sequenced as blue→purple→red→yellow. Priors are equal to
the posteriors from the previous quarter.

Respondents are asked to repeatedly, i.e. over several consecutive quarters, forecast a
given calendar year outcome. The fixed-event nature of the probability forecasts implies
that we can observe how a forecaster’s beliefs about a given calendar year outcome evolves
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over time. This is illustrated in Figure 2.2 where we have plotted how the probability forecast
of Forecaster #570 about CPI inflation in 2021 changed quarter-to-quarter in 2020. When
COVID struck in 2020:Q2, the forecaster shifted the distribution to the right, increasing
the probability of high inflation outcomes and in subsequent quarter, he or she continued to
shift even more probability mass to high inflation outcomes. In the last quarter, the revi-
sions changed directions and the forecaster then increased the probability of more moderate
inflation outcomes.

3. Extracting common and individual information from probability
forecasts

The SPF allows us to observe how a cross-section of individual forecasters’ beliefs about a
given event changes over time. We can use this cross-section of belief revisions to extract an
estimate of the information that is commonly observed by all forecasters in a given period.
The basic idea is to find the single signal that, if observed by all respondents, explains “the
most” of the observed belief revisions. Individual signals are then defined to explain any
residual revisions not accounted for by the common signal. We now describe how to make
this idea operational, but first a note on interpretation, notation and terminology.

As noted in the introduction, the common signal is extracted as if the common component
in the belief revision was explained by a single signal. Likewise, the individual signal is
extracted as if the idiosyncratic belief revision of an individual agent was caused by a single
signal. In practice, both types of signals capture beliefs revisions most likely driven by
information from multiple sources.

We index forecasters by j ∈ 1, 2, ..., J and time by t ∈ 1, 2, ..., T . We use x to denote a
generic macroeconomic outcome which can take values in n ∈ 1, 2, ..., N different intervals
(or bins) in X. The probability forecast of forecaster j in period t is denoted p(x | Ωj

t) where
x ≡ (x1, x2, ..., xN) is the vector of possible outcomes and Ωj

t denotes the information set
available to forecaster j in period t. A signal structure is a probability distribution p (S | X)
that associates a probability for each possible signal s ∈ S with each possible outcome x ∈ X.

It is natural to formulate the discussion below in terms of prior and posterior distributions,
where the posterior is obtained by combining the new information in the signal with the
information in the prior. However, it is worth remembering that given the fixed-event nature
of the forecasts, the prior in period t is simply the posterior inherited from period t− 1.

3.1. Bayes’ rule, belief updates and realized signals. We do not observe either fore-
casters’ signal structures, or the realized signals directly, but observing both the prior and
the posterior allow us to infer the implied relative probability of observing the realized signal
in different states x ∈ X.
To understand what we can learn about the properties of realized signals from observing

beliefs revisions, it is helpful to start with the mechanics of Bayesian updating. Denote the
prior of forecaster j as Ωj

t−1 and the signal observed in period t as st.
6 Bayes rule then tells

6While st denotes a generic signal in this subsection, with a slight abuse of notation, we will also use st to
denote the common signal in what follows.
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us that the posterior distribution of x is given by

p(x | Ωj
t−1, st) =

p(st | x)p(x | Ωj
t−1)

p(st | Ωj
t−1)

(3.1)

where the likelihood function is conditionally independent of the priors so that p(st | x) =
p(st | x,Ωj

t−1) for all j. Both the prior and the posterior are N -dimensional probability
simplices, i.e. they are N -dimensional vectors with elements summing to 1. The likelihood
function for the realized signal p(st | x) ∈ (0, 1)N is also an N -dimensional object but it is
not necessarily a simplex.7 However, the elements in p(st | x) are proportional to the ratio
of the posterior and the prior probabilities of each corresponding outcome xn ∈ X, i.e.

p(st | xn) ∝
p(xn | Ωj

t−1, st)

p(xn | Ωj
t−1)

. (3.2)

Since p(st | Ωj
t−1) in (3.1) is simply a normalizing constant that ensures that the posterior

probabilities over different states xn sum to one, the ratio of the posterior and prior proba-
bilities for each xn are sufficient to characterize the realized signal. From here on, when we
refer to a signal, we take that to mean the N -dimensional object proportional to p(st | x).
(Also, note that the label associated with the particular signal outcome is irrelevant.)

3.2. Extracting the common signal by minimizing Kullback-Leibler divergence.
We saw in the previous paragraph that it is possible to back out an implied signal that in
principle can account for the entire belief revision from p(x | Ωj

t−1) to p(x | Ωj
t) for each

forecaster j. However, we want to estimate the conditional distribution p (st | x) of the
common signal available to every forecaster. In general, such a signal will not be able to
explain the entire belief revision of every forecaster in a given period, but we can estimate
it by imposing that it should explain the maximum amount of the cross-section of belief
revisions. To make this notion operational, we need to be specific about what “maximum
amount” means.

For a given signal st and prior distribution p(x | Ωj
t−1) we can compute the Kullback-

Leibler divergence between the observed posterior distribution p(x | Ωj
t) and the hypothetical

beliefs p(x | Ωj
t−1, st) a forecaster would have after updating to the signal st as

KL(Ωj
t ; Ω

j
t−1, st) =

N∑
n=1

p(xn | Ωj
t) log

(
p(xn | Ωj

t)

p(xn | Ωj
t−1, st)

)
. (3.3)

We can then define the estimated common signal ŝt as

p (ŝt | x) = arg min
p(st|x)∈(0,1)N

J∑
j=1

KL(Ωj
t ; Ω

j
t−1, st) (3.4)

so that the estimate of the common signal st is the signal that minimizes the sum of KL-
divergences between the cross-section of observed posteriors and the cross-section of the
hypothetical beliefs forecasters would have if ŝt was the only piece of additional information
available in period t.

7That is, while each element of p(st | x) is a probability, it is not generally the case that
∑N

n=1 p(st | xn) = 1.
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Figure 3.1. Illustration of procedure to estimate common and individual
signals for a constructed example with N = 5. Beliefs are updated from left to
right following the arrows. Blue graphs indicate observed beliefs. Gray graphs
indicate signals. Green graphs indicate hypothetical intermediate beliefs im-
plied by the priors and the common signal. The common signal is chosen to
minimize the distance between the green intermediate beliefs and the observed
posteriors in the right hand column. The individual signals are defined so that
when the priors are updated with the common and respective individual sig-
nals, the implied posterior coincides with the observed posterior.

3.3. Extracting the residual individual signals by inverting Bayes rule. We define
the individual signal sjt of forecaster j as the signal, that when combined with the common
signal and the forecaster j’s observed prior, results in a posterior belief equal to his or her
observed posterior in the SPF. It can be backed out by inverting Bayes rule as in (3.2) so
that for each xn ∈ X we have

p(ŝjt | xn) ∝
p(xn | Ωj

t−1, ŝt, s
j
t)

p(xn | Ωj
t−1, ŝt)

. (3.5)



INDIVIDUAL AND COMMON INFORMATION 11

The procedure is illustrated for a hypothetical cross-section of two forecasters in Figure
3.1. The blue distributions in the far left and far right columns are, respectively, the observed
prior and posterior beliefs that we obtain from the survey data. The top row corresponds to
the beliefs and signals of the first forecaster, the bottom row to that of the second. The first
step of the procedure is to find the common signal (gray, left-of-center column) such that
the sum of the Kullback-Leibler divergences between the implied intermediate beliefs (green,
center column) and the observed actual posteriors (blue, far right column) for each forecaster
are minimized. The second step uses the inverted Bayes rule (3.2) to find the individual
signals (gray, right-of-center column) so that when the updated hypothetical intermediate
beliefs are updated, each forecasters’ posterior coincides with the observed posteriors (blue,
far right column).

3.4. Realized signals vs signal structures. If we can observe how forecasters beliefs
about a given event evolve over τ consecutive periods, we can observe τ − 1 updates of these
beliefs and hence back out τ − 1 common signals about the event, as well as τ − 1 individual
signals for each participating individual forecaster. The procedure described above allow us
to identify the likelihood p(st | x) of the realized signals up to a constant of proportionality
cj = p(st | Ωj

t−1)
−1 for each period where we can observe a belief revision about x. Since

knowledge of any function proportional to the likelihood function, i.e. any function of the
form a × p(st | x) : a ∈ R+ , is sufficient to completely determine how agents update their
prior in response to the signal st, extracting the properties of the realized signal up to a
constant of proportionality is sufficient for our purposes. However, note that the procedure
does not allow us to characterize the properties of forecasters’ complete signal structure, i.e.
it does not allow us to infer anything about the properties of other possible but unrealized
signals st ∈ S, since doing so would require us to make assumptions about the invariance
of the signal structure over time. Our procedure relies only on the information contained in
the update between period t− 1 and t to extract the signals in period t.
Note also that we do not impose that beliefs are rational in the sense of being model

consistent or that forecast errors are not systematic. We simply impose that beliefs evolve
as if agents apply Bayes’ Rule to some, possibly mis-specified, probabilistic model.

Above we have used the language of information and signals to decompose the cross-section
of beliefs revisions and this language naturally connects to the theoretical literature. In the
next section, we use the first order condition for the minimization problem (3.4) to derive
conditions on actual information structures that ensures that what the procedure extracts
indeed corresponds to individual and common signals. There, we also characterize what the
procedure finds under alternative modeling assumptions, for instance when different agents
interpret a common signal differently or when the true underlying information structure is
a standard linear Gaussian noisy rational expectations model.

4. Properties of the estimated signals and alternative information
structures

The procedure above describes how the common and individual component of forecasters’
information set can be extracted from cross-sections of belief revisions. In this section we first
provide a theoretical characterization of the signals that the proposed estimation procedure
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delivers in terms of sample moments. These results help our intuition for what the procedure
will designate as common and individual information, and for how the mechanics of Bayesian
updating determine how much the extracted common signal tilts beliefs towards different
outcomes.

The theoretical results presented here also allow us to characterize what the procedure
finds under alternative information structures. In particular, we derive the theoretical coun-
terparts to the estimated individual and common signals in settings where (i) different agents
interpret a common signal differently and (ii) the information structure is of a linear-Gaussian
form commonly used in the theoretical imperfect information literature.

4.1. Properties of the estimated signals. The estimated common signal is found by
minimizing the sum of Kullback-Leibler divergences (3.4) between the beliefs it induces and
the observed posteriors. In general, there is no common signal that will make these two sets
of beliefs exactly equal for each forecaster. However, the following proposition characterizes
the estimated common signal ŝt in terms of the posterior beliefs it induces relative to the
observed average cross-section of posteriors.

Proposition 1. The estimated common signal ŝt from 3.4 induces average beliefs equal to
the average observed posterior distribution, i.e.

1

J

J∑
j=1

p
(
xn | Ωj

t−1, ŝt
)
=

1

J

J∑
j=1

p
(
xn | Ωj

t

)
: n = 1, 2, ..., N. (4.1)

Proof. In the Appendix. □

The proposition shows that the cross-sectional average beliefs induced by the common
signal will in fact match the observed cross-sectional average posteriors. The logic of the proof
is as follows. First, we show that the first order condition of (3.4) is sufficient to characterize
the common signal ŝt that minimizes the sum of Kullback-Leibler divergences. The desired
result then follows directly from manipulation of the first order condition. Corollary 1
characterizes the belief updates induced by the corresponding individual signals.

Corollary 1. The estimated individual signals induce belief updates that average to zero
across agents, i.e.

1

J

J∑
j=1

[
p
(
xn | ŝjt , ŝt,Ω

j
t−1

)
− p

(
xn | ŝt,Ωj

t−1

)]
= 0 : n = 1, 2, ..., N. (4.2)

The corollary follows simply from the fact that the average beliefs induced by the common
signal matches the average observed posteriors. The average update to the individual signals
must then average to zero across agents, since by construction, the individual signals are
defined as the signals that, when combined with the common signal, induces the observed
posterior beliefs.

Another way of understanding this result is to consider if, contrary to the corollary, the
individual signals shifts the average posteriors towards a state xn. This would imply that a
different common signal s∗t could achieve a smaller KL-divergence between the induced beliefs

and the posteriors than the extracted common signal ŝt by setting p (s
∗ | xn) /

∑N
m=1 p (ŝt | xm)
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> p (ŝt | xn) /
∑N

m=1 p (ŝt | xm) . The signal p (ŝt | x) then cannot be the solution to the min-
imization problem (3.4).

The information in the common signal st influences the posterior only through the like-
lihood function p(st | x). If the observed posteriors attach a higher average probability to
state n than to state m relative to the observed priors, in order for Proposition 1 to hold,
the extracted common signal must tilt beliefs towards state n relative to state m. To better
understand what determines how much the common signal needs to favor one state over
another, it is helpful to define the mean-posterior-over-mean-prior odds ratio of state n and
m as follows.

Definition 1. The mean-posterior-over-mean-prior odds ratio Rn
m is defined as

Rn
m =

(
1
J

∑J
j=1 p

(
xn | Ωj

t

)
1
J

∑J
j=1 p

(
xm | Ωj

t

)) /

(
1
J

∑J
j=1 p

(
xn | Ωj

t−1

)
1
J

∑J
j=1 p

(
xm | Ωj

t−1

)) (4.3)

The ratio Rn
m captures how much period t information shifts average beliefs in favor of

state n relative to state m. As the following proposition shows, the ratio Rn
m serves as a

baseline that captures how much more weight the extracted common signal puts on state n
relative to state m in the special case when all agents share the same prior beliefs.

Proposition 2. If the prior beliefs of all forecasters coincide, the relative probability of
observing ŝt in states n and m equals the mean-posterior-over-mean-prior odds ratio so that

p (ŝt | xn)

p (ŝt | xm)
= Rn

m. (4.4)

Proof. In the Appendix. □

In the special case of common priors, the relative likelihood of observing the common
signal in states n and m are simply equal to how much more likely, on average, state n is
perceived to be relative to state m after agents have observed period t information.

It is difficult (and we have been unable) to derive general results for when the equality (4.4)
should be replaced with an inequality for arbitrary priors. However, the following two-agent
example provides some intuition for why (4.4) fails to hold generally, and what determines
the direction of the inequality that replaces it when agents have heterogeneous priors.

Proposition 3. For j ∈ {1, 2}, the extracted common signal puts more weight on state n
relative to state m, compared to the common prior baseline so that

p (ŝt | xn)

p (ŝt | xm)
> Rn

m. (4.5)

if the agent who a priori thinks state n is relatively more likely, i.e.

p
(
xn | Ω1

t−1

)
p
(
xm | Ω1

t−1

) >
p
(
xn | Ω2

t−1

)
p
(
xm | Ω2

t−1

) (4.6)

is also the agent who thinks the realized signal ŝt is more likely, i.e.

p
(
ŝt | Ω1

t−1

)
p
(
ŝt | Ω2

t−1

) > 1. (4.7)
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.

Proof. In the Appendix. □

The intuition for this result echoes the motivation of Shannon’s (1948) definition of the
quantity of information as the inverse of the probability of observing a signal. Bayesian
updating implies that a less probable, and hence a more informative signal, changes beliefs
more than a more probable signal, all else equal. A Bayesian agent will thus update his or
her beliefs less, the higher his or her prior probability was of observing the realized signal.
The proof follows from that this effect is concave in the probability of observing the signal.
The signal then needs to be substantially more likely to be observed in state n than in state
m, in order to move the prior beliefs of both agents sufficiently for the average posterior
odds ratio of state n and m to shift by the factor Rn

m relative to the prior average odd ratio.

4.2. Conditions for asymptotic convergence between extracted and true signals.
For discrete beliefs and information structures it is possible to derive conditions that ensures
that the extracted common and individual signals asymptotically converge to the true signals
as the number of agents become large.

Proposition 4. Fix time t, let p (sj | xn) be random variables with support [0, 1], and
i.i.d. across j. The estimated signal converges in probability to the true common sig-

nal, i.e. p (ŝ | xn)
p→ p (s | xn) for all n as J → ∞, if p (sj | xn) is i.i.d. across n, and

p(xn | s,Ωj
t−1) =

1
N

for every n and j.

Proof. In the Appendix. □

To prove this result we treat the parameters of their likelihood functions associated with
each forecasters individual signal as random variables. The conditions in the proposition
ensure that the average update to the individual signal of the probability of each state
averages to zero across agents. From Corollary 1, we know that this is a consequence of the
first order condition (4.1), which in turn is sufficient to characterize the extracted signals.

The conditions in Proposition 4 are very stringent, and it is easy to think of settings where
they are not satisfied. For instance, if all agents observe a perfectly precise individual signal,
so that p (sj | xm) = 0 if m ̸= n for some n ∈ {1, 2, ..., N}, then the procedure will attribute
the implied degenerate posteriors as being caused by a perfectly precise common signal. This
example violates the condition that E [p (sj | xn)] = E [p (sj | xm)] .

A less extreme example is when the individual signals on average tilt beliefs towards some
state xn so that E [p (sj | xn)] > E [p (sj | xm)] for n ̸= m. There will then be a common
component in the individual signals that will be attributed to the common signal by our
procedure.

Finally, if the beliefs p(xn | st,Ωj
t−1) are random, or non-random but not uniform, the

average belief update to the individual signals will not average to zero in the cross-section
even if E [p (sj | xn)] = E [p (sj | xm)] for all pairs of n and m. It is thus only under spe-
cial circumstances that the individual and common signals can be interpreted as literally
being different signals. In settings where these conditions are not satisfied, the appropriate
interpretation is that the procedure extracts individual and common components of the new



INDIVIDUAL AND COMMON INFORMATION 15

information available to agents in a given period that can be characterized as if they were
single signals.8

4.3. Different agents interpret a common signal differently. In a rational expecta-
tions model, all agents have model consistent expectations and hence share the same model.
In such a setting, all agents also interpret a common signal the same way. However, in a
world where different agents may use different models, agents may use different likelihood
functions to update their beliefs even to a common signal. To allow for different agents using
different models, all we need to do is to treat the likelihood function each agent associates
with the common signal as agent-specific, rather than the signal itself. Agent j’s posterior
is then given by

pj(x | Ωj
t−1, st) =

pj(ŝt | x)p(x | Ωj
t−1)

p(st | Ωj
t−1)

(4.8)

where the key notational difference is the j index on the likelihood function and the posterior.
The special case with common priors is again helpful, since the extracted common signal is
then a simple function of the cross-sectional averages of the agent specific likelihood functions.

Corollary 2. With agent specific likelihood functions but a common prior, the estimated
common signal satisfies

p (ŝt | xn)

p (ŝt | xm)
=

1
J

∑J
j=1 pj(st | xn)

1
J

∑J
j=1 pj(st | xm)

(4.9)

for each pair n,m ∈ 1, 2, ..., N.

The proof follows from taking the ratio of the averages of (4.8) across agents for state n
and m and then combining it with Proposition 1. In the case of heterogeneous priors, the
expressions are again more complicated, but the logic and intuition of 2 and 3 above apply
also to the case when a single common signal is interpreted differently.

4.4. Linear Gaussian signal extraction. Dating back to the classic papers of Lucas
(1972), Grossman and Stiglitz (1976), Hellwig (1980) and Admati (1985), a large theoretical
literature has used linear-Gaussian information structures to study economic decisions in
settings where agents have private information.9 The key advantage of this structure is its
tractability, yielding closed form solutions for agents’ posteriors. Given its continuing pop-
ularity and prominence in the theoretical imperfect information literature it is of interest to
ask what our method would find if the observed survey data was generated by an underlying
linear-Gaussian information structure. To study this question, we here first describe the
standard linear-Gaussian set-up and what it implies for agents’ beliefs.

Denote the prior beliefs of agent j as x | Ωj
t−1 ∼ N

(
µj, σ2

)
and let the dispersion of prior

means be normally distributed so that µj ∼ N
(
µ, σ2

µ

)
. All agents observe the common signal

8Numerical simulations with a large number of forecasters indicate that signals that are independent across
forecasters and satisfy E

[
p
(
sj | xn

)]
= E

[
p
(
sj | xm

)]
generate estimated common signals that are numer-

ically very close to the true signals if p(xn | st,Ωj
t−1) are also independent across forecasters.

9See for instance the literature overviews in Veldkamp and Baley (2022) or Angeletos and Lian (2022).
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st that is the sum of the true x and a common noise shock η

st = x+ η : η ∼ N
(
0, σ2

η

)
(4.10)

as well as an individual signal sjt of a similar form

sjt = x+ εj : εj ∼ N
(
0, σ2

ε

)
(4.11)

but where the noise shock εj is agent specific. The next lemma, which simply summarizes
well-known results, characterizes the posterior beliefs implied by this structure.

Lemma 1. In the linear-Gaussian information structure, the posterior of agent j is given
by a Gaussian distribution such that

E
(
x | Ωj

t−1, st, s
j
t

)
= gµµ

j + gsst + gjs
j
t (4.12)

var
(
x | Ωj

t−1, st, s
j
t

)
=
(
σ−2 + σ−2

η + σ−2
ε

)−1
(4.13)

where

gµ =
σ−2

σ−2 + σ−2
η + σ−2

ε

, gs =
σ−2
η

σ−2 + σ−2
η + σ−2

ε

, gj =
σ−2
ε

σ−2 + σ−2
η + σ−2

ε

. (4.14)

The next proposition characterizes the estimated common signal ŝt in terms of primitives,
if the true information structure is of the form (4.10) - (4.11).

Proposition 5. Up to the discrete approximation, the estimated common signal ŝt has con-
ditional distribution

ŝt | x ∼ N
(
x, σ̂−2

η

)
(4.15)

with estimated realized signal value given by

ŝt = (1− ĝ)−1
[
(gµ − ĝ)µ+ gss+ gjx

]
(4.16)

where ĝ = σ−2

σ̂−2
η +σ−2 and σ̂−2

η solves the equation

g2µσ
2
µ + g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
= ĝ2σ2

µ +
(
σ−2 + σ̂−2

η

)−1
. (4.17)

Proof. In the Appendix. □

While algebraically somewhat involved, the proof strategy is conceptually quite simple.
It only requires finding a realized ŝt and a likelihood function p (ŝt | x) such that the first
order condition

∫
j
p
(
x | ŝt,Ωj

t−1

)
dj =

∫
j
p
(
x | st, sjt ,Ω

j
t−1

)
dj holds. It is possible to solve

(4.17) for σ̂−2
η explicitly, but the resulting expression is not very informative. The following

corollaries summarizes the key properties of p (ŝt | x) and σ̂−2
η .

Corollary 3. The estimated common signal ŝt coincides with st for all realizations if and
only if σ2

ε → ∞.

The corollary states that it is only when the individual signals are completely uninforma-
tive that the extracted common signal generally coincides with the true realized signal. To
understand this result, consider when both the common and individual signals are informa-
tive. Clearly, the common signal will shift the location of the average posterior. However, if
the individual signals are informative, they will also shift the average posterior towards the
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true value of x. In order for the average posterior induced by the estimated common signal
to coincide with the observed average, the estimated common signal need to shift beliefs in
way that accounts for both the true common signal and the average shift towards the true
value of x induced by the individual signals.

Corollary 4. If the true common signal is uninformative
(
σ2
η → ∞

)
, then the estimated

common signal is of the form ŝt = α(x− βµ) with α ≥ 1 and β ≤ 1 with estimated precision

σ̂−2
η < σ−2

ε .

If the true common signal is uninformative, the procedure will attribute the part of the
shift in in the location of the posterior driven by the average individual signal as being caused
by the estimated common signal.

Corollary 5. The estimated precision σ̂−2
η is increasing in both σ−2

ε and σ−2
η .

The corollary states that the precision of the estimated common signal is increasing in the
precision of both the common and individual true signals. This implies that if the underlying
information structure is Gaussian, our procedure will attribute increases in precision of the
individual signals as partly being due to a more precise common signal. The formal proof is
in the Appendix, but the result follows from the fact that both sides of the equation (4.17)
are average posterior forecast errors. Both must be decreasing in the precision of all types
of signals. From this, the results then follows from the implicit function theorem.

Corollary 6. The estimated private signals ŝj have precision

σ̂−2
ε = σ−2

ε −
(
σ̂−2
η − σ−2

η

)
(4.18)

and sample mean given by ∫
ŝjdj = gµµ+ gss+ gjx. (4.19)

The corollary follows from that when combined, the estimated individual and common
signals imply a posterior that is equal to the true posterior. Since the individual signals
cannot change the cross-sectional average distribution relative to the beliefs implied by the
common signal, the mean individual signal must equal the average expected value of x
conditional on the common signal. The variance in (4.18) is simply given by equating the
posterior variance implied by s and sj with the posterior variance implied by ŝ and ŝj.

It is clear from the definition (3.4) that our procedure is designed to maximize the impor-
tance of the common signal. What we have shown here is what this implies for what the
procedure finds under alternative underlying information structures. It is only under special
conditions that what the procedure labels common and individual signals match with true
underlying population objects with the same interpretation. The procedure thus provides
an upper bound for the importance of the common signal, both in terms of how precise it
is estimated to be and how much of the first-moment of the observed belief revisions that it
can explain.

5. Three measures of signal informativeness

We want to quantify the informativeness of common and individual signals and study
their cyclical properties. For this purpose, we here define three measures capturing different
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aspects of signal informativeness. To facilitate comparisons, each measure is defined so that
a higher value indicates a more informative signal.

5.1. The belief update measure. A natural starting point is to find a measure that
quantifies how much a given signal changes a prior belief. One such measure is the belief
update measure, defined as the Kullback-Leibler divergence between the prior and posterior
distributions.

Definition 5.1. The belief update measure KL(Ωt−1; Ωt−1, st) of the signal st is defined as

KL(Ωt−1; Ωt−1, st) =
N∑

n=1

p(xn | Ωj
t−1) log

(
p(xn | Ωj

t−1)

p(xn | Ωj
t−1, st)

)
(5.1)

The belief update measure is large when the signal st results in a posterior distribution
that is very different from the prior. From Bayes rule, this measure depends on how different
the conditional signal probability ratios p(st | xn)/p(st | xm) are from the corresponding prior
ratios p

(
xn | Ωj

t−1

)
/p
(
xm | Ωj

t−1

)
. Hence, while it measures how much a signal affects the

forecasters’ beliefs, it depends not only on the signal but also on the forecaster’s prior beliefs.

Figure 5.1. The signal s with concentrated conditional probabilities p(s | x)
(left panel) implies a large belief revision if the prior is uniform (middle panel)
but a smaller revision if the prior is already concentrated (right panel), illus-
trating the dependence of the belief update measure on the prior distribution.

The role of the prior for the belief update measure is illustrated in Figure 5.1. The
uniform prior (middle panel), when combined with a signal that has most of the mass in the
tail regions of the distribution (left panel), implies a revision that re-allocates a lot of the
mass from the tail regions towards the central bin. This results in a large Kullback-Leibler
divergence between the prior and the posterior. A more concentrated prior (right panel)
that already has most of the mass in the central bin, would be only marginally updated
after the observation of the same signal leading to a correspondingly small Kullback-Leibler
divergence between prior and posterior. A given signal will according to the update measure
thus be considered more informative for a forecaster whose posterior changes a lot relative
to his or her prior.
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5.2. The negative entropy measure. Entropy is a measure of uncertainty, and for discrete
distributions it is maximized by a uniform distribution. Entropy, and hence uncertainty, is
minimized when there is only one possible outcome, i.e. for the degenerate distribution. We
define the negative entropy measure as the negative of the posterior entropy a (hypothetical)
agent with a uniform prior would have after having observed the signal.

Definition 5.2. The negative entropy measure H(st) of a signal st is defined as

H(st) =
N∑

n=1

p (xn | Ωu, st) log p (xn | Ωu, st) (5.2)

where Ωu denotes a uniform prior over outcomes in X.

The negative entropy measure is thus independent of forecasters’ beliefs and a function
only of the conditional signal probabilities p(s | x). It captures the notion that a signal that
is only likely to be observed in a specific state xn ∈ X is more informative than a signal that
is equally likely to be observed in many states.

5.3. The precision measure. The belief update and the entropy measures are independent
of the numerical labels associated with each outcome xn and would remain unchanged if we
reordered the outcome bins for the variable x. Hence, it does not distinguish between a
signal that assigns all the probability mass to two central bins and a signal that assigns
all the probability mass to two bins in the tails of the distribution. The precision measure
remedies this and allows us to talk about the precision of a signal.

Definition 5.3. The precision measure P (st) of a signal st is defined as

P (s) = var (x | Ωu, st)
−1 (5.3)

The measure P (st) is thus the inverse of the variance of the posterior beliefs of a (hypo-
thetical) agent with uniform prior have after having observed the signal. Defining it requires
us to assign numerical values for each outcome xn ∈ X. We do so by simply associating each
interior outcome with the mid-point of the interval as defined in the SPF. For one-sided open
boundary intervals we impose that the interval width is equal to the average interval length
for the period. (Our results are robust to alternative ways to assign values to boundary
intervals.)

Figure 5.2 illustrates how the entropy and the precision measure captures different aspects
of the informativeness of a signal. Both signals imply that there are two bins that are much
more likely than the remaining four bins, and both signals would be considered equally
informative according to the entropy measure (5.2). However, the signal in the left panel
assigns large weights to the two central bins, thus resulting in a high precision measure,
while the signal in the right panel assign large weights to the boundary bins, resulting in a
low precision measure.

One widely used measure of signal informativeness that is central to the large rational
inattention literature that builds on the formalism proposed in Sims (1998, 2003), is mutual
information. The mutual information I(S;X) between two random variables S and X
measures how much the entropy of X is reduced by observing S. Computing it requires
knowledge of the entire conditional distribution p(S | X), i.e. we would need to know p(sm |
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Figure 5.2. Illustration of the difference between entropy and variance mea-
sures of signal informativeness. From a uniform prior, the conditional proba-
bilities of the signals in the left and right panel imply posterior distributions
with the same entropy since the entropy measure is independent of the order-
ing of the bins. However, the signal in the left hand panel is more informative
according to the precision measure.

xn) for each sm ∈ S where m ∈ {1, 2, ...,M} indexes the labels of different signal realizations.
As discussed above, estimating the entire signal structure would require imposing additional
restrictions on its time invariance and we do not pursue this in the current paper. Below we
will use the measures defined here to quantify how signal informativeness differs over time,
across variables and across individual and common signals.

6. Empirical properties of individual and common signals

In this section we apply the procedure described above to SPF probability forecasts. As
an informal validation exercise for the methodology, we start by reporting how the mea-
sures of signal informativeness change in response to known macroeconomic events. We
then study the cyclical properties of both common and individual signals and how their
informativeness covary with macroeconomic variables, forecasters’ subjective probability of
a recession, NBER dated recessions and with an index of expected stock market volatility.
Finally, we document the relative informativeness of common and individual signals as well
as the cross-sectional heterogeneity of signal informativeness across forecasters.

Throughout this section, our focus is on the current year forecasts. As shown by Bassetti,
Casarin and Del Negro (2022), at short horizons, the SPF survey respondents’ perceived
precision of their forecasts corresponds closely to their actual forecast accuracy, while at
longer horizons, the relationship is more tenuous or non-existent. Our measures of the
subjective precision of signals then also translates into actual precision in forecasting at
short horizons.10 Whether the distinction that we measure forecasters’ subjective uncertainty
matters or not depends on the purpose of the analysis. For instance, if we are interested in

10Results are qualitatively similar for longer forecasts horizons, though there is generally less variation in
signal informativeness about next and the-year-after-next calendar year outcomes. The complete results are
available through the replication files.
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whether forecasters form beliefs rationally as in Bassetti, Casarin and Del Negro (2022), then
it certainly matters whether forecasts are more accurate when they perceive them to be so.
However, for understanding decisions taken under uncertainty, it is arguably the subjective
uncertainty that is more relevant.

We extract the common signal and the individual signals for each forecaster at each quarter
about current year outcomes of CPI inflation, unemployment, GDP growth, GDP deflator
and PCE inflation. The procedure associates an N -dimensional vector of probabilities with
each type of signal at each point in time. As a summary of the informativeness of the
common and individual signals and how it varies over time, we compute the time series
of each measure of informativeness for the common signal together with the cross-sectional
average informativeness of the individual signals. The time-series of these measures for CPI
inflation, unemployment and GDP growth are plotted in Figure 6.1.11

6.1. Signal informativeness and known macroeconomic events. Information about
the macro economy does not exist in a vacuum, but is generated and acquired jointly with
economic outcomes. The incentives for economic agents to acquire information about the
economy is likely to depend on economic conditions, e.g. Flynn and Sastry (2022). Economic
conditions also affect how much news media focus on the economy, e.g. Nimark (2014) and
Chahrour, Nimark and Pitschner (2021) as well as how much and in what manner central
banks communicate about the economy, e.g. Herbert (2021). We would thus a priori expect
that our measures of informativeness should increase in response to major macroeconomic
events. As an informal validation check, we first document that this is indeed the case.

Figure 6.1 shows that signal informativeness varies substantially over time and that the
variation tends to be clustered in time. The sample period includes two major macroeco-
nomic events, the financial crisis/Great Recession of 2008-2009 and the onset of the COVID
pandemic in the second quarter of 2020. A common pattern across variables and measures is
that signal informativeness increases during both the Great Recession and during COVID.
That this pattern is present also in the precision measure suggests that, while these were
periods of high macroeconomic volatility, they were not necessarily periods of high perceived
uncertainty.

Some changes in informativeness are specific to some macro variables and events. For CPI
inflation, the financial crisis initially resulted in a larger increase in the informativeness of the
common signal. As demonstrated in the previous section, an increase in the informativeness
of the common signal could be driven by either an actual increase in its informativeness or by
a more dominant common component in the cross-section of individual signals. In the period
following the acute phase of the financial crisis, individual signals explain more of forecasters’
belief revisions and they are also perceived to have increased in precision. However, since
this perceived increase in precision is attributed to the individual signal, there must also be
an increase in the cross-sectional differences in beliefs, since by Corollary 6 the update to
the individual signal must average to zero in the cross-section. Furthermore, since the same
episode is associated with an increased precision also of the common signal, one should be

11The corresponding graphs for GDP deflator, PCE inflation and the entire sample for GDP growth are
reported in the Appendix.
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Figure 6.1. Time series of informativeness of individual and common signals
about CPI inflation, unemployment and GDP growth.
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cautious to interpret the increase in cross-sectional dispersion of beliefs as an increase in
forecasters’ subjective uncertainty, e.g. Bachmann, Elstner, and Sims (2013).

The initial stages of the COVID pandemic is associated with an increase in the informa-
tiveness of both the individual and the common signal about CPI inflation. However, there is
a very sharp increase in the informativeness of the common signal coinciding with the sharp
increase in actual CPI inflation mid-way through 2021. That this period is associated with a
sharp increase in the informativeness of the common signal generally is likely a consequence
of the intense media focus on inflation at the time.

For the informativeness of the signals about unemployment, the time around the finan-
cial crisis does not stand out in the same way as it does for CPI inflation. However, the
informativeness of the common signals about unemployment did increase sharply during the
COVID pandemic. Unlike for inflation though, this increase happened early in the pandemic,
perhaps reflecting that the increase in actual unemployment occurred much faster and more
dramatically than the increase in CPI inflation that occurred only towards the tail end of
the pandemic.

One interesting episode that the procedure picks up occurs in 2014:Q2. If one were to only
look at the unemployment rate outcome in that quarter, there is nothing to suggest that
anything special was going on. However, the Federal Reserve had previously stated that they
would leave interest rates at or near 0% until unemployment fell below 6.5%, see Federal
Reserve Board of Governors (2012). This threshold was crossed in 2014:Q2 and because of
its significance for future policy changes, it received a large amount of media attention, e.g.
New York Times (2012). For GDP growth, we can see that as for the other variables, the
informativeness of signals increases during both the financial crisis and during COVID. The
procedure thus captures the kind of events that we a priori would expect to influence how
much information agents acquire about macroeconomic variables.

6.2. The cyclical properties of signal informativeness. To document the cyclical prop-
erties of signal informativeness, we here first compute the correlations between our measures
and the associated underlying macro variables. We also compute the correlations of our
measures with the subjective probability of a recession, actual NBER dated recessions and
the VIX measure of expected stock market volatility implied by option prices.

Correlations between signal informativeness and macro variables. Table 1 reports the cor-
relation between the informativeness of signals and outcomes for CPI inflation as well as
the correlation with lagged outcomes and measures of volatility, i.e. the magnitude of abso-
lute changes. High inflation tends to be associated with more informative common signals,
though this pattern is generally not statistically significant except for the negative entropy
measure and only at the 10% level. High inflation is negatively uniformly negatively cor-
related with the informativeness of individual signals, but statistically significantly so only
for lagged inflation and then only at the 10% level for the negative entropy and precision
measures.

The strongest, and statistically most significant correlations overall, are between the in-
formativeness of signals and lagged absolute changes in inflation, suggesting that forecasters
become more informed from both individual and common sources when inflation is more
volatile. However, as shown in the bottom panel of Table 1, when the COVID period
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2020:Q2-2023:Q2 is excluded from the sample, practically all the correlations between the
informativeness of the common signal and the inflation outcomes become statistically in-
significant. Excluding the COVID period also makes the correlations between the informa-
tiveness of the individual signals and the level and volatility of inflation uniformly significant
at the 1% level. These correlations are strongly negative at around -0.45 for the level of in-
flation and strongly positive, ranging from 0.38 to 0.47 for the absolute changes of inflation.
This suggest that during normal times, there is a strong cyclical component in forecasters’
acquisition of individual information, while during times with more extreme periods when
inflation outcomes become an important news story, the common component in forecasters
information sets becomes more important. This is consistent with the model and evidence
presented in Nimark and Pitschner (2019), where major events lead to more homogeneous
news coverage.

CPI inflation

πcpi
t πcpi

t−1 ∆πcpi
t

∣∣∆πcpi
t

∣∣ ∣∣∆πcpi
t−1

∣∣
Individual signals

KL -0.08 -0.13 0.08 0.48∗∗∗ 0.45∗∗∗

H -0.20 -0.22∗ -0.03 0.36∗∗∗ 0.35∗∗∗

P -0.17 -0.22∗ 0.05 0.36∗∗∗ 0.35∗∗∗

Common signals
KL 0.12 0.15 -0.03 0.23∗ 0.44∗∗∗

H 0.25∗ 0.21∗ 0.14 0.45∗∗∗ 0.53∗∗∗

P 0.02 0.04 -0.12 -0.06 0.29∗∗

CPI inflation (excluding COVID)

πcpi
t πcpi

t−1 ∆πcpi
t

∣∣∆πcpi
t

∣∣ ∣∣∆πcpi
t−1

∣∣
Individual signals

KL -0.45∗∗∗ -0.13∗∗∗ -0.16 0.47∗∗∗ 0.52∗∗∗

H -0.44∗∗∗ -0.38∗∗∗ -0.13 0.38∗∗∗ 0.47∗∗∗

P -0.44∗∗∗ -0.41∗∗∗ -0.05 0.42∗∗∗ 0.46∗∗∗

Common signals
KL -0.17 -0.12 -0.14 0.16 0.13
H -0.14 -0.09 -0.13 0.24∗ 0.19
P -0.10 -0.06 -0.12 0.17 0.19

Table 1. Correlation of CPI inflation outcomes and associated information
measures, with and without including the COVID sample. Asterisks ∗,∗∗ ,∗∗∗

denote 10%, 5%, and 1% significance levels.

The top panel of Table 2 reports that high (lagged) levels of unemployment tend to be
associated with both individual and common signals being more informative and precise.
Interestingly, while high levels of unemployment tend to be associated with more informative
signals, increases in unemployment tend to be associated with less informative and less precise
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Unemployment
ut ut−1 ∆ut |∆ut| |∆ut−1|

Individual signals
KL 0.27∗ 0.38∗∗∗ -0.18 -0.06 -0.19
H 0.16 0.31∗∗ -0.24∗ 0.07 -0.10
P 0.32∗∗ 0.28∗∗ 0.06 -0.11 -0.11

Common signals
KL 0.22 0.48∗∗∗ -0.41∗∗∗ 0.38∗∗∗ 0.14
H 0.20 0.40∗∗∗ -0.31∗∗ 0.24∗ 0.04
P 0.21 0.43∗∗∗ -0.35∗∗∗ 0.31∗∗ 0.12

Unemployment (excluding COVID)
ut ut−1 ∆ut |∆ut| |∆ut−1|

Individual signals
KL 0.73∗∗∗ 0.73∗∗∗ -0.08 0.13 0.14
H 0.50∗∗∗ 0.51∗∗∗ -0.18 0.16 0.09
P 0.36∗∗ 0.35∗∗ 0.05 -0.07 0.04

Common signals
KL 0.31∗∗ 0.32∗∗ -0.24 0.24 0.15
H 0.18 0.20 -0.31∗∗ 0.35∗∗ 0.08
P 0.11 0.14 -0.32∗∗ 0.37∗∗ 0.02

Table 2. Correlation of unemployment outcomes and associated information
measures, with and without including the COVID sample. Asterisks ∗,∗∗ ,∗∗∗

denote 10%, 5%, and 1% significance levels..

signals. This pattern also holds, but becomes somewhat less statistically significant when
the COVID sample is excluded (bottom panel). One possible interpretation of this result is
that in a recession, when unemployment increases rapidly, there is an increased uncertainty
about how high unemployment will go before it peaks.

As with the signals about CPI inflation, excluding the COVID sample increases both the
magnitude and the statistical significance of the correlations between the informativeness of
the individual signals and the level of unemployment. These correlations now range from
0.36 to 0.73 and is significant at the 5% or 1% level.

Signal informativeness and recessions. The Federal Reserve Bank of Philadelphia, who ad-
ministers the SPF, computes the so-called Anxious Index which measures the SPF respon-
dents’ subjective probability of a recession. The survey asks panelists to estimate the prob-
ability that real GDP will decline in the quarter in which the survey is taken and in each
of the following four quarters. The anxious index is the average reported probability of a
decline in real GDP in the quarter after a survey is taken. As shown in Table 3, for almost
all measures and variables, this index is positively correlated with each of our measures of
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signal informativeness and for a majority of the measures, these correlations are statistically
significant.

CPI inflation unemployment GDP growth GDP deflator PCE inflation

Individual signals
KL 0.20 0.06 0.27∗∗∗ 0.23∗∗∗ 0.24∗

H 0.15 0.24∗ 0.27∗∗∗ 0.17∗∗ 0.24∗

P 0.13 -0.20 -0.02 -0.06 0.23∗

Common signals
KL 0.16 0.72∗∗∗ 0.18∗∗∗ 0.08 0.19
H 0.26∗ 0.45∗∗∗ 0.24∗∗∗ 0.14∗ 0.17
P 0.03 0.58∗∗∗ 0.15∗∗ -0.10 0.04

Table 3. Correlation between the Philadelphia Fed’s Anxious Index and the
measures of informativeness. ∗,∗∗ ,∗∗∗ denote 10%, 5%, and 1% significance
levels respectively.

The Anxious Index captures forecasters’ subjective probabilities of a recession. It is also
the subjective probability of a recession that should matter for incentives for acquiring more
precise information. The correlations between the informativeness of the signals and actual
NBER dated recessions are generally weaker, and the sign of these correlations is not uniform
across measures and variables. There does thus not appear to be any systematic relationship
between the informativeness of signals and actual recessions.12

Signal informativeness and stock market volatility. The VIX Index is a popular measure of
market expectations of the volatility of stock prices derived from prices of S&P 500 index
options. It is provided by the Chicago Board Options Exchange. As shown in Table 4,
with the exception of the precision of signals about inflation in the GDP deflator index,
all measures of signal informativeness are positively correlated with the VIX Index. This
indicates that when there is a high level of perceived uncertainty about the stock market,
the incentives to acquire information by the survey participants are also particularly strong.
Again, for a majority of the measures, these correlations are statistically significant.

There exists theoretical models that predict that recessions are times of reduced signal
informativeness if economic activity by itself help generate information, e.g. Chalkley and
Lee (1998), Veldkamp (2005), Van Nieuwerburgh and Veldkamp (2006), Ordoñez (2013),
Fajgelbaum, Shaal and Taschereau-Dumouchel (2017). Other models, e.g. Chiang (2022),
Song and Stern (2022) and Flynn and Sastry (2022), instead point point out that incentives to
acquire information is stronger during recessions when the marginal utility of consumption is
high and mistakes are more costly. Flynn and Sastry (2022) also find that empirically, firms
that pay more attention to macroeconomic variables in recessions make smaller mistakes
in hiring. This is consistent with our evidence that signal informativeness is positively
correlated with the Philadelphia Fed’s Anxious Index as well as with the VIX Index from the
Chicago Board Options Exchange. The fact that the informativeness of the signals co-move

12The correlations with NBER dated recessions is available through the replication files.
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CPI inflation unemployment GDP growth GDP deflator PCE inflation

Individual signals
KL 0.29∗∗ 0.36∗∗∗ 0.25∗∗∗ 0.12 0.22∗

H 0.29∗∗ 0.30∗∗ 0.20∗∗ 0.10 0.23∗

P 0.32∗∗ 0.03 0.17∗ -0.02 0.19
Common signals

KL 0.12 0.26∗ 0.22∗∗ 0.15∗ 0.17
H 0.25∗∗ 0.16 0.22∗∗ 0.12 0.22∗

P 0.02 0.10 0.08 -0.07 0.05

Table 4. Correlation between the VIX Index and measures of informative-
ness. ∗,∗∗ ,∗∗∗ denote 10%, 5%, and 1% significance levels respectively.

positively with the VIX Index is also not surprising considering that the SPF participants
are to large extent drawn from banks and other financial firms. It makes sense that the value
of more precise information for such firms should be increasing in the perceived uncertainty
of financial markets.

6.3. Cross-sectional heterogeneity in signal informativeness. To evaluate whether
individual or common signals are on average more informative, we first compute the time-
average of the informativeness of the common signal. We then compare this to the time-
average informativeness of the forecasters’ individual signals. The result of this is illustrated
in Figure 6.2, where have plotted the average informativeness of the common signal (vertical
red line) together with the histogram of the cross-section of the time-average informativeness
of forecasters’ individual signals. The labels on each panel indicate for each measure and each
variable the fraction of forecasters who observe individual signals that are more informative
than the common signal.

From the figure it is clear that, for all variables and measures except the precision measure
for unemployment and GDP, a majority of forecasters observe individual signals that are
more informative than the common signal. Without the spikes in precision associated with
unemployment crossing the 6.5% threshold in 2014:Q2 and at the onset of COVID in 2020:Q2,
this would hold also for the precision measure for unemployment. Similarly, this would also
hold for the precision measure of GDP growth without the spike in 2020:Q2. The fact
that for most measures and most forecasters, the individual signals are more informative is
particularly noteworthy since the procedure to estimate the common signal by construction
maximizes its importance.13

The finding that individual signals tend to be more informative and for many agents more
precise than the common signal is to some degree surprising, and contrary to some views
expressed in the existing literature. For context, consider the following quote of Svensson
(2006), who argued that “Central banks allocate many more resources to collecting, process-
ing, and analyzing data about the economy than any individual agent. It therefore seems
extremely unlikely that the amount of noise in central-bank information should be more than
eight times that in the individual information of an individual agent.” The quote appears to

13How this fact may affect our estimates of precision is discussed in more detail in Section 6 below.
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Figure 6.2. Cross-section of informativeness of individual signals relative to
the common signal. The labels on each panel indicate for each measure and
each variable the fraction of forecasters who observe individual signals that
are more informative than the common signal.

suggest that it is unlikely that any individual signals should be more informative than the
common signal, given how much resources central banks allocate to analyzing and commu-
nicating about the economy. However, we find that more than half of all SPF respondents
observe signals about inflation that they perceive to be more precise than the common signal,
and about a third observe individual signals about unemployment that are more precise than
the common signal. Now, this could be because many professional forecasters actually do
have access to more precise individual information. Alternatively, the Federal Reserve may
have been unable to communicate their information clearly to outsiders, in spite of having
access to very precise information internally so that individual forecasters interpret the same
information differently. 14

14The relative precision of individual versus public information may matter for how more precise information
affect welfare. In an influential paper, Morris and Shin (2002) argued that if private signals are sufficiently
precise, more precise public information may be detrimental to welfare. The quote from Svensson (2006)
is from a short paper where he argued that the conditions required for more precise public information to
be detrimental to welfare is unlikely to hold in practice. Svensson’s argument was quantitative, taking the
framework of Morris and Shin (2002) as given. In related work, Angeletos, Iovino and La’O (2016) pointed
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We are unaware of any papers that have focused on empirically estimating the relative
informativeness of common and individual signals. However, there exists a small number of
structural models that feature both private and public signals, and that have either been
calibrated or estimated to match the dynamics of macroeconomic aggregates, e.g. Lorenzoni
(2009) and Nimark (2014). While not the main focus of these papers, the relative informa-
tiveness of common and individual (or public and private) signals are addressed indirectly.
A careful quantitative comparison of our results with the calibrated or estimated param-
eters from the structural macro literature would be quite involved, but these papers have
generally used (or found) parameter values that imply that agents’ private signals are more
informative than the public signals. Our results are thus qualitatively consistent with the
relative precision of the public and private signals in these papers.15

While the individual signals appear to both be more precise and explain more of forecasters
belief revisions than the common signals, there is substantial cross-sectional heterogeneity.
To get a sense of the magnitude of this heterogeneity, we can translate the precision measure
into a measure of uncertainty by computing the implied posterior standard deviation of
a hypothetical agent with a uniform prior who have observed a typical individual signal.
The cross-sectional range between the 5th and 95th percentile of this measure is 0.64-1.42%
for CPI inflation, 0.92-1.71% for unemployment and 1.47-3.83% for GDP growth. There is
little existing theoretical work that either attempts to explain heterogeneity in information
precision, or to study its consequences, with one interesting exception being Broer, Kohlhas,
Mitman and Schlafman (2022).16

6.4. The correlation between individual and common signal informativeness. The
correlation between the cross-sectional average informativeness of the individual signals and
the informativeness of the common signal are positive for each variable and each measure.
However, this could simply be a result of that the estimation procedure for the reasons an-
alyzed in Section 4. However, the positive correlation between the informativeness of the
common signal and the average informativeness of the individual signals masks substantial
heterogeneity. As illustrated in Figure 6.3, for each measure and for each variable, a sub-
stantial fraction of forecasters observe individual signals whose informativeness is negatively
correlated with that of the common signal. The labels on the panels indicate the fraction
of forecasters who observe individual signals with an informativeness that co-varies nega-
tively with the informativeness of the common signal. This suggests that for at least some

out that the detrimental effect of more precise public information hinges on the assumption in Morris and
Shin (2002) that there is no social value in coordination.
15One reason such a comparison is not straightforward is that the type of models used in Lorenzoni (2009)
and Nimark (2014) impose substantial structure on the data that implies that there may be a feedback from
the dynamics of macro aggregates to the estimated parameter values. Another issue that would complicate
such a direct comparison is that agents in these models observe multiple private signals, that these signals
are partly about exogenous variables, and that a single signal is to different degrees informative about several
different endogenous variables.
16Some of the heterogeneity in individual signal informativeness is driven by forecasters entering and exiting
the sample at different points in time. When we control for within-period cross-sectional mean informative-
ness, the standard deviation across forecasters fall by between 3 and and 30 per cent, depending on variable
and measure.
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forecasters, more informative common information sources are a substitute for individual
information sources.

Figure 6.3. Cross-section of correlations between informativeness of indi-
vidual and common signals. The labels on the panels indicate the fraction
of forecasters who observe individual signals with an informativeness that co-
varies negatively with the informativeness of the common signal.

Most of the theoretical literature that has studied endogenous information acquisition
while allowing for both private and public information have found that more accurate public
information crowds out individual information acquisition, e.g. Wong (2008) and Colombo,
Femminis and Pavan (2014). Such a mechanism would suggest a negative correlation between
the informativeness of individual and common signals. This mechanism thus appears to be
able to account for the behavior of at least some of the forecasters.

7. Conclusions

We have proposed a method that can be used to extract individual and common signals
from a cross-section of belief revisions while imposing only weak assumptions. When ap-
plied to probability forecasts from the Survey of Professional Forecasters, we find that (i)
the informativeness of both common and individual signals is state-dependent, with major
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macroeconomic events, volatile inflation, high unemployment, perceived stock market volatil-
ity and a high risk of recession all tending to be associated with more informative signals,
(ii) when excluding the COVID pandemic period, the cyclicality of signal informativeness is
most pronounced in individual signals while the COVID pandemic is associated with a large
increase in the informativeness of common signals across all variables. While these findings
are consistent with the model and evidence in Nimark and Pitschner (2019), where major
events lead to more homogeneous news coverage, more work is needed to understand the
macroeconomic consequences of time variation in the relative importance of the common
component in forecasters belief revisions.

We also find that individual signals are on average perceived to be both more precise
and to account for more of forecasters’ belief revisions than the common signals, but that
there is substantial cross-sectional heterogeneity in signal informativeness. There is little
existing theoretical work that attempts to explain heterogeneity in information precision,
with one interesting exception being Broer, Kohlhas, Mitman and Schlafman (2022). More
work is clearly needed to better understand both the drivers and the consequences of this
heterogeneity.

In addition to the empirical findings from the Survey of Professional Forecasters, we also
characterized the theoretical properties of the extracted common and individual signals.
While one advantage of our approach is that it is model-agnostic, these latter results are
helpful for researchers that have a specific model in mind and want to compare that model’s
theoretical properties with the data along the dimensions analyzed here.

An alternative approach to the one we have pursued in the present paper would be to
do likelihood based inference on the distributions of the signals, similar to the one taken
by Bassetti, Casarin and Del Negro (2022) to model the beliefs underlying the survey data.
Such an approach would have the advantage of allowing us to make probabilistic inference
about the distribution of both the common and individual signals. However, a drawback
would be that it would be harder to characterize what such an approach would find when
applied to data generated by alternative information structures.
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Appendix A. Proofs

A.1. Proof of Proposition 1. We want to prove that the first order condition (4.1) is
sufficient to identify the probabilities p (ŝt | x) ∈ (0, 1)N that minimizes (3.4). The logic of
the proof is as follows. Since the function to be minimized is smooth and defined on a closed
set, its minimum will either be at the boundary or at an interior point where the first order
condition (FOC) holds.. We will show that near the boundary, the function tends to infinity,
so that the minimum must be at an interior point. We then show that at all interior points
where the FOC holds, the function is convex. Hence, the FOC identifies a unique minimizing
signal, up to a the normalizing constant..

To find the FOC, use that the log of a ratio is equal to the differences in logs, we can
rewrite the minimization problem (3.4) as

p (ŝt | x) = arg min
p(ŝt|x)∈(0,1)N

J∑
j=1

N∑
n=1

p(xn | Ωj
t )

[
log
( N∑
i=1

p (ŝt | xi) p(xi | Ωj
t−1)

)
− log

(
p (ŝt | xn) p(xn | Ωj

t−1)
)]

(A.1)

The first order conditions w.r.t. p (ŝt | xn) is then given by

J∑
j=1

N∑
m=1

p(xm | Ωj
t)

p(xn | Ωj
t−1)∑N

i=1

(
p(xi | Ωj

t−1)p (ŝt | xi)
) − J∑

j=1

p(xn | Ωj
t)

p(xn | Ωj
t−1)

p(xn | Ωj
t−1)p (ŝt | xn)

= 0

(A.2)
which can be rearranged to the desired expression

1

J

J∑
j=1

p(xn | Ωj
t) =

1

J

J∑
j=1

p (ŝt | xn) p(xn | Ωj
t−1)∑N

i=1

(
p(xi | Ωj

t−1)p (ŝt | xi)
) (A.3)

=
1

J

J∑
j=1

p(xn | Ωj
t−1, ŝt). (A.4)

From FOC we have the Jacobian of the objective function,

∇f =

[∑J
j=1

p(x1|Ωj
t−1)∑N

i=1(p(xi|Ωj
t−1)p(ŝt|xi))

−
∑J

j=1 p(x1|Ωj
t )

p(ŝt|x1)
· · ·

∑J
j=1

p(xN |Ωj
t−1)∑N

i=1(p(xi|Ωj
t−1)p(ŝt|xi))

−
∑J

j=1 p(xN |Ωj
t )

p(ŝt|xN )

]′
(A.5)

implying that element k, l of the Hessian Hf is given by

hf,k,l =
J∑

j=1

−p(xk | Ωj
t−1)

2(∑N
i=1 p(xi | Ωj

t−1)p (ŝt | xi)
)2 +

J∑
j=1

p(xk | Ωj
t)

p (ŝt | xk)
2 if k = l (A.6)

hf,k,l =
J∑

j=1

−p(xk | Ωj
t−1)p(xk | Ωj

t−1)(∑N
i=1 p(xi | Ωj

t−1)p (ŝt | xi)
)2 if k ̸= l (A.7)

If Hf was a positive definite matrix everywhere, the FOC would be both necessary and
sufficient to characterize the minimum. However, while this is not the case, Hf is a positive
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semi-definite matrix at all points where first order conditions hold. To see that,

λ′Hfλ =

J∑
j=1

N∑
i=1

p(xi | Ωj
t )

λi

p (ŝt | xi)2
−

J∑
j=1

(∑N
i=1 p(xi | Ω

j
t−1)λi

)2
(∑N

i=1 p(xi | Ω
j
t−1)p (ŝt | xi)

)2 (A.8)

=
J∑

j=1

N∑
i=1

p(xi | Ωj
t−1)λ

2
i

p (ŝt | xi)
(∑N

k=1 p(xk | Ωj
t−1)p (ŝt | xk)

) −
J∑

j=1

(∑N
i=1 p(xi | Ω

j
t−1)λi

)2
(∑N

i=1 p(xi | Ω
j
t−1)p (ŝt | xi)

)2
(A.9)

=
J∑

j=1

N∑
i=1

p(xi | Ωj
t−1)

2λ2
i

p(xi | Ωj
t−1)p (ŝt | xi)

(∑N
k=1 p(xk | Ωj

t−1)p (ŝt | xk)
) −

J∑
j=1

(∑N
i=1 p(xi | Ω

j
t−1)λi

)2
(∑N

i=1 p(xi | Ω
j
t−1)p (ŝt | xi)

)2
(A.10)

≥ 0 (A.11)

for any positive vector λ. The first equality come from simply multiplying through with λ.
The second equality comes from substituting in the FOC (4.1). The inequality is implied

by Sedrakyan’s lemma,
∑n

i=1
u2
i

vi
≥ (

∑n
i=1 ui)

2∑n
i=1 vi

, with ui = p(xi | Ωj
t−1)λi, and vi = p(xi |

Ωj
t−1)p (ŝt | xi)

(∑N
k=1 p(xk | Ωj

t−1)p (ŝt | xk)
)
. The last line holds with equality only when

λi is proportional to p (ŝt | xi)
(∑N

k=1 p(xk | Ωj
t−1)p (ŝt | xk)

)
. The minimizing signal is thus

only unique up to a normalization of the prior probability of observing the realized sig-
nal. Stated differently, there are many signals that obtains the minimum, but the ratios
p (ŝt | xi) /p (ŝt | xk) are uniquely determined. Since the KL-divergence between two dis-
tributions tend to infinity if either distribution tend to the degenerate one, the objective
function tend to inifinity near the boundary points of the simplex and is thus always greater
at the boundary than at an interior critical point. The interior local minimum must then in
fact also be the global minimum.

A.2. Proof of Proposition 2. We want to prove that if the prior beliefs of all forecasters
coincide, the relative probability of observing ŝt in states n and m equals the mean-posterior-
over-mean-prior odds ratio so that

p (ŝt | xn)

p (ŝt | xm)
= Rn

m. (A.12)

Start by taking the ratio of the posterior probabilities of state n and m induced by the signal

1
J

∑J
j=1 p(xn | Ωj

t)
1
J

∑J
j=1 p(xm | Ωj

t)
=

1
J

∑J
j=1

p(ŝt|xn)p(xn|Ωj
t−1)∑N

i=1(p(ŝt|xi)p(xi|Ωj
t−1))

1
J

∑J
j=1

p(ŝt|xm)p(xm|Ωj
t−1)∑N

i=1(p(ŝt|xi)p(xi|Ωj
t−1))

. (A.13)
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Since by assumption, p(ŝ | Ωj
t−1) = p(ŝ | Ωk

t−1) for all j, k ∈ {1, 2, ..., J} this can be simplified
to ∑J

j=1 p(xn | Ωj
t)∑J

j=1 p(xm | Ωj
t)

=

∑J
j=1 p (ŝt | xn) p(xn | Ωj

t−1)∑J
j=1 p (ŝt | xm) p(xm | Ωj

t−1)
. (A.14)

which after the rearranging yields the desired result since by definition

Rn
m =

(
1
J

∑J
j=1 p

(
xn | Ωj

t

)
1
J

∑J
j=1 p

(
xm | Ωj

t

)) /

(
1
J

∑J
j=1 p

(
xn | Ωj

t−1

)
1
J

∑J
j=1 p

(
xm | Ωj

t−1

)) . (A.15)

A.3. Proof of Proposition 3. For j = 1, 2, the FOC implies

p (ŝt | xn)

p (ŝt | xm)
=

p (xn | Ω1
t ) + p (xn | Ω2

t )

p (xm | Ω1
t ) + p (xm | Ω2

t )
×

p(xm|Ω1
t−1)

p(s|Ω1
t−1)

+
p(xm|Ω2

t−1)
p(s|Ω2

t−1)
p(xn|Ω1

t−1)
p(s|Ω1

t−1)
+

p(xn|Ω2
t−1)

p(s|Ω2
t−1)

(A.16)

and the desired inequality

p (ŝt | xn)

p (ŝt | xm)
> Rn

m (A.17)

hence holds if

p(xm|Ω1
t−1)

p(s|Ω1
t−1)

+
p(xm|Ω2

t−1)
p(s|Ω2

t−1)
p(xn|Ω1

t−1)
p(s|Ω1

t−1)
+

p(xn|Ω2
t−1)

p(s|Ω2
t−1)

>
p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

)
p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) . (A.18)

To derive the conditions in the proposition, start by multiplying the term on the left hand
side by p

(
s | Ω1

t−1

)
to get

p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

) p(s|Ω1
t−1)

p(s|Ω2
t−1)

p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) p(s|Ω1
t−1)

p(s|Ω2
t−1)

>
p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

)
p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) . (A.19)

Since this expression holds with equality if the ratio of prior probabilities of observing the

signal
p(s|Ω1

t−1)
p(s|Ω2

t−1)
equals 1, the desired inequality holds if the derivative of the left hand side of

(4.6) with respect to
p(s|Ω1

t−1)
p(s|Ω2

t−1)
is positive. Define the function f as

f

(
p
(
s | Ω1

t−1

)
p
(
s | Ω2

t−1

)) =
p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

) p(s|Ω1
t−1)

p(s|Ω2
t−1)

p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) p(s|Ω1
t−1)

p(s|Ω2
t−1)

. (A.20)
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The quotient rule then gives

f ′ =
p
(
xm | Ω2

t−1

) (
p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

)
y
)
− p

(
xn | Ω2

t−1

) (
p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

)
y
)(

p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) p(s|Ω1
t−1)

p(s|Ω2
t−1)

)2

(A.21)
so that f ′ > 0 if

p
(
xm | Ω2

t−1

)(
p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) p (s | Ω1
t−1

)
p
(
s | Ω2

t−1

))−
p
(
xn | Ω2

t−1

)(
p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

) p (s | Ω1
t−1

)
p
(
s | Ω2

t−1

)) > 0 (A.22)

which can be simplified to

p
(
xm | Ω2

t−1

)
p
(
xn | Ω2

t−1

) >
p
(
xm | Ω1

t−1

)
p
(
xn | Ω1

t−1

) . (A.23)

This implies that if we increase the ratio
p(s|Ω1

t−1)
p(s|Ω2

t−1)
starting from 1, then the desired inequality

follows if conditions (4.6) and (4.7) hold. (If only one of the conditions hold, the inequality
switches direction.)

A.4. Proof of Proposition 4. From the first order condition (4.1) we know that

1

J

J∑
j=1

p(xn | ŝt,Ωj
t−1) =

1

J

J∑
j=1

p(xn | sjt , st,Ω
j
t−1) ∀n. (A.24)

i.e. the average beliefs conditional on the extracted common signal equals the average pos-
teriors. We want to show that under the conditions in the proposition,

lim
J

p→∞

1

J

J∑
j=1

p(xn | ŝt,Ωj
t−1) = lim

J
p→∞

1

J

J∑
j=1

p(xn | st,Ωj
t−1) ∀n. (A.25)

That is, we want to derive conditions that ensure that p (ŝt | xn) converges to p (st | xn) as
j → ∞.

Combining A.24 and A.25, it is therefore sufficient to show that the conditions in the
proposition ensures that in the limit as j → ∞

lim
j

p→∞

1

J

J∑
j=1

p(sjt | xn)p(xn | st,Ωj
t−1)

p(sjt | st,Ω
j
t−1)

= lim
J

p→∞

1

J

J∑
j=1

p(xn | st,Ωj
t−1). (A.26)

From the law of large numbers, it is equivalent to have

E

[
p(sjt | xn)p(xn | st,Ωj

t−1)∑N
n=1 p(s

j
t | xn)p(xn | st,Ωj

t−1)

]
= E

[
p(xn | st,Ωj

t−1)
]
. (A.27)
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Under the assumed conditions,

E

[
p(sjt | xn)p(xn | st,Ωj

t−1)∑N
n=1 p(s

j
t | xn)p(xn | st,Ωj

t−1)

]
= E

[
p(sjt | xn)∑N
n=1 p(s

j
t | xn)

]
(A.28)

=
1

N
. (A.29)

The first equality comes from plugging inp(xn | st,Ωj
t−1) =

1
N
. The second equality holds

because
p(sjt |xn)∑N

n=1 p(s
j
t |xn)

are identically distributed across n and sum to 1.

A.5. Proof of Proposition 5. The strategy of the proof is to first derive the cross-sectional
average posterior distribution for the linear Gaussian information structure. We then use
that the first order condition from the KL-minimization problem states that this should
equal the cross-sectional average posterior implied by the estimated common signal ŝ. This
reduced the problem to matching coefficients across distributions.

The linear-Gaussian filtering problem described by (4.10) - (4.11) implies that agent j’s
posterior is given by p

(
x | s, sj, µj

)
= N (µ̄j, σ̄2) where

µ̄j =
σ−2

σ−2 + σ−2
η + σ−2

ε

µj +
σ−2
η

σ−2 + σ−2
η + σ−2

ε

s+
σ−2
ε

σ−2 + σ−2
η + σ−2

ε

sj (A.30)

and

σ̄2 =
(
σ−2 + σ−2

η + σ−2
ε

)−1
. (A.31)

The cross-sectional average distribution is the integral of the compound distribution of two
normal distributions, which again is a normal distribution and given by∫

j

p
(
x | s, sj, µj

)
p
(
sj, µj

)
dj = N

(
gµµ+ gss+ gjx, g2µσ

2
µ + g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
)

(A.32)
where

gµ =
σ−2

σ−2 + σ−2
η + σ−2

ε

, gs =
σ−2
η

σ−2 + σ−2
η + σ−2

ε

, gj =
σ−2
ε

σ−2 + σ−2
η + σ−2

ε

. (A.33)

To prove the proposition, we need to find a signal ŝ with conditional distribution p (ŝ | x)
such that the implied average posterior is equal to (A.32) above. If

ŝ = x+ η̂ : η̂ ∼ N
(
0, σ̂−2

η

)
(A.34)

then the posterior belief of agent j is given by

p
(
x | ŝ, µj

)
= N

(
σ−2

σ−2 + σ̂−2
η

µj +
σ̂−2
η

σ−2 + σ̂−2
η

ŝ,
(
σ−2 + σ̂−2

η

)−1
)

(A.35)

implying an average and that

µj = µ+ εj : εj ∼ N
(
0, σ2

µ

)
(A.36)
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so that we can write

x = gµ+ (1− g) ŝ+ gεj + δ : δ ∼ N
(
0,
(
σ−2 + σ̂−2

η

)−1
)

(A.37)

so that

x | ŝ ∼ N
(
ĝµ+ (1− ĝ) ŝ, ĝ2σ2

µ +
(
σ−2 + σ̂−2

η

)−1
)

(A.38)

=

∫
j

p
(
x | ŝ, µj

)
dj (A.39)

where

ĝ =
σ−2

σ−2 + σ̂−2
η

. (A.40)

Equating the two cross-sectional average posteriors∫
j

p
(
x | s, sj, µj

)
p
(
sj, µj

)
dj =

∫
j

p
(
x | ŝ, µj

)
dj (A.41)

we get a system of two equations and two unknowns

gµµ+ gss+ gjx = ĝµ+ (1− ĝ) ŝ (A.42)

g2µσ
2
µ + g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
= ĝ2σ2

µ +
(
σ−2 + σ̂−2

η

)−1
(A.43)

Rearranging these expressions gives the desired result.

Alternative derivation. If

µj ∼ N(µ, σ2
µ), µ is a constant, (A.44)

x | s, µj ∼ N
(
aµj + (1− a)s, σ2

x

)
(A.45)

then, x | s ∼ N
(
ĝµ+ (1− ĝ)s, σ2

x + ĝ2σ2
µ

)
.

p(x | s, µj) =
1√
2πσx

e
(x−ĝµj−(1−ĝ)s)

2

2σ2
x , (A.46)

p(x | s) =
∫
R
p(x | s, µj)p(µj | s)dµj =

∫
R
p(x | s, µj)p(µj)dµj (A.47)

because the prior distribution does not depend on s.
The following is an alternative derivation to the one above, which yields the same end result.

The benefit of this second derivation is that it shows explicitly why the compound distribution
consisting of a continuum of normal distributions with normal distributed means is also a normal
distribution.

Start by expanding the integral (A.47) to get

p(x | s) =
∫

1√
2πσx

e
(x−ĝµj−(1−ĝ)s)

2

2σ2
x

1√
2πσµ

e

(µj−µ)
2

2σ2
µ dµj (A.48)

and combine the two product of the two exponential terms

p(x | s) =
∫

1

2πσxσµ
e

σ2
µ(x−ĝµj−(1−ĝ)s)

2
+σ2

x(µj−µ)
2

2σ2
xσ2

µ dµj . (A.49)
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Expand the squared terms

p(x | s) =
∫

1

2πσxσµ
e

(ĝ2σ2
µ+σ2

x)µj
2−(2ĝxσ2

µ−2ĝ(1−ĝ)sσ2
µ+2µσ2

x)µj+(σ2
µx2+σ2

µ(1−ĝ)2s2−2(1−ĝ)sxσ2
µ+σ2

xµ2)

2σ2
xσ2

µ dµj

and isolate the constants and divide by 2σ2
xσ

2
µ so that

p(x | s) = e

(
(σ2

µx2+σ2
µ(1−ĝ)2s2−2(1−ĝ)sxσ2

µ+σ2
xµ2)

2σ2
xσ2

µ

) ∫
1

2πσxσµ
e

(µj)
2
−

(2ĝxσ2
µ−2ĝ(1−ĝ)sσ2

µ+2µσ2
x)

(a2σ2
µ+σ2

x)
µj

2σ2
xσ2

µ

(a2σ2
µ+σ2

x)


dµj

This can be rearranged to be a Gaussian density for µj

p(x | s) = 1
√
2π
√
ĝ2σ2

µ + σ2
x

e

(
(σ2

µx2+σ2
µ(1−ĝ)2s2−2(1−ĝ)sxσ2

µ+σ2
xµ2)

2σ2
xσ2

µ
−

(ĝxσ2
µ−ĝ(1−ĝ)sσ2

µ+µσ2
x)2

2σ2
xσ2

µ(ĝ2σ2
µ+σ2

x)

)
(A.50)

×
∫

1√
2π

√
ĝ2σ2

µ + σ2
x

σxσµ
e


(
µj−

(ĝxσ2
µ−ĝ(1−ĝ)sσ2

µ+µσ2
x)

(ĝ2σ2
µ+σ2

x)

)2

2σ2
xσ2

µ

(ĝ2σ2
µ+σ2

x)


dµj (A.51)

i.e. the previous expression is of the form of the form 1√
2πσ

exp
(µj−µ)

2

2σ2 . To simplify, merge the

constants

p(x | s) = 1
√
2π
√
ĝ2σ2

µ + σ2
x

e

(
(σ2

µx2+σ2
µ(1−ĝ)2s2−2(1−ĝ)sxσ2

µ+σ2
xµ2)

2σ2
xσ2

µ
−

(ĝxσ2
µ−ĝ(1−ĝ)sσ2

µ+µσ2
x)2

2σ2
xσ2

µ(ĝ2σ2
µ+σ2

x)

)
(A.52)

Combine the terms in the exponential

p(x | s) = 1
√
2π
√
ĝ2σ2

µ + σ2
x

e

(
x2−2((1−ĝ)s+ĝµ)+ĝ2µ2+(1−ĝ)2s2−2ĝ(1−ĝ)sµ

2(ĝ2σ2
µ+σ2

x)

)
(A.53)

and simplify to get

p(x | s) = 1
√
2π
√

ĝ2σ2
µ + σ2

x

e

(
(x−((1−ĝ)s+ĝµ))2

2(ĝ2σ2
µ+σ2

x)

)
(A.54)

What we have in (A.54) is then the pdf of a normal distribution with mean (1 − ĝ)s + ĝµ and
variance ĝ2σ2

µ + σ2
x .

A.6. Proof of Corollary 2. Take the ratio of the averages of (4.8) across agents for state
n and m, drop the indices for the prior information set,∑J

j=1 pj(xn | Ωt−1, st)∑J
j=1 pj(xm | Ωt−1, st)

=

∑J
j=1(pj(st | xn)p(xn | Ωt−1))∑J
j=1(pj(st | xm)p(xm | Ωt−1))

(A.55)

=

∑J
j=1 pj(st | xn)∑J
j=1 pj(st | xm)

p(xn | Ωt−1)

p(xm | Ωt−1)
(A.56)

Rewrite the equality to get
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∑J
j=1 pj(st | xn)∑J
j=1 pj(st | xm)

=

∑J
j=1 pj(xn|Ωt−1,st)

p(xn|Ωt−1)∑J
j=1 pj(xm|Ωt−1,st)

p(xm|Ωt−1)

(A.57)

From (A.3) in the proof of Proposition 1, we can write

p (ŝt | xn)

p (ŝt | xm)
=

∑J
j=1 p

(
xn | Ωj

t

)∑J
j=1 p

(
xm | Ωj

t

)
∑J

j=1

p(xm|Ωj
t−1)∑N

i=1(p(xi|Ωj
t−1)p(ŝt|xi))∑J

j=1

p(xn|Ωj
t−1)∑N

i=1(p(xi|Ωj
t−1)p(ŝt|xi))

(A.58)

=

∑J
j=1 p(xn|Ωj

t)
p(xn|Ωt−1)∑J
j=1 p(xm|Ωj

t)
p(xm|Ωt−1)

(A.59)

That gives us the desired equality because in the heterogeneous likelihood case, the factual
posterior p

(
xn | Ωj

t

)
equals pj(xn | Ωt−1, st) .

A.7. Proof of Corollary 3. We want to show that when σ2
ε → ∞, ŝ → s and σ̂2

η→ σ2
η.

From (4.14) we then have that

gµ → σ−2

σ−2 + σ−2
η

, gs →
σ−2
η

σ−2 + σ−2
η

, gj → 0, (A.60)

as σ2
ε → ∞. Plug in (4.17)

(
σ−2

σ−2 + σ−2
η

)2 · σ2
µ + (σ−2 + σ−2

η )−1 = (
σ−2

σ−2 + σ̂−2
η

)2 · σ2
µ + (σ−2 + σ̂−2

η )−1 (A.61)

Notice that σ̂2
η = σ2

η is one solution to this equation. It is also the unique solution because

the right hand side of (A.61)is increasing in σ̂2
η, while the left hand side is fixed.

Thus, ĝ → σ−2

σ−2
η +σ−2 , and ŝ = (1− ĝ)−1

[
(gµ − ĝ)µ+ gss+ gjx

]
→ s.

Now we show the other direction. From 4.16 we can see that ŝ = s for all realizations of s,if
and only if (1− ĝ)−1gs = 1, and (1− ĝ)−1

[
(gµ − ĝ)µ+ gjx

]
= 0.

(1− ĝ)−1gs = 1 gives

σ̂−2
η =

σ−2
η

σ−2
ε + σ−2

η + σ−2
(σ−2

η + σ−2)

Since the mean of the prior dispersion µ and true state x are not restricted, we can infer

from (1− ĝ)−1
[
(gµ − ĝ)µ+ gjx

]
= 0 that gµ = ĝ and gj = 0. Combining all the conditions

gives us σ2
ε = ∞.

A.8. Proof of Corollary 4. If the true common signal is uninformative, i.e., σ2
η → ∞,then

gµ → σ−2

σ−2 + σ−2
ε

, gs → 0, gj →
σ−2
ε

σ−2 + σ−2
ε

, (A.62)

Plug in (4.17)
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(
σ−2

σ−2 + σ−2
ε

)2 · σ2
µ + (

σ−2
ε

σ−2 + σ−2
ε

)2 · σ2
ε + (σ−2 + σ−2

ε )−1 = (
σ−2

σ−2 + σ̂−2
η

)2 · σ2
µ + (σ−2 + σ̂−2

η )−1

(A.63)
Again this equation has a unique solution for σ̂2

η, note also this solution must be σ̂2
η > σ2

ε by

monotonicity of the right-hand side of (A.63) in σ̂2
η. Therefore, gµ = σ−2

σ−2+σ−2
ε

< σ−2

σ−2+σ̂−2
η

= ĝ.

From (4.16) we then have the desired result

ŝ = (1− ĝ)−1
[
(gµ − ĝ)µ+ gss+ gjx

]
(A.64)

= (1− ĝ)−1gj

[
gµ − ĝ

gj
µ+ x

]
(A.65)

= α(x− βµ) (A.66)

where α = (1− ĝ)−1gj, β = ĝ−gµ
gj

, and α > (1− gµ)
−1gj = 1, β < 1−gµ

gj
= 1, αβ < 1.

A.9. Proof of Corollary 5. To show the estimated precision σ̂−2
η is increasing in σ−2

ε and

σ−2
η , we apply the Implicit Function Theorem to 4.17.

We start by showing that ∂σ̂−2
η /∂σ−2

η > 0. The derivative of the right-hand side of 4.17with

respect to the precision of the estimated common signal σ̂−2
η is

∂RHS

∂σ̂−2
η

=
∂
(
( σ−2

σ−2+σ̂−2
η
)2 · σ2

µ + (σ−2 + σ̂−2
η )−1

)
∂σ̂−2

η

(A.67)

=
∂
(
( σ−2

σ−2+σ̂−2
η
)2 · σ2

µ

)
∂σ̂−2

η︸ ︷︷ ︸
<0

+
∂
(
(σ−2 + σ̂−2

η )−1
)

∂σ̂−2
η︸ ︷︷ ︸

<0

(A.68)

< 0 (A.69)

and the derivative of the left-hand side w.r.t. the precision of the true common signal σ−2
η is

∂LHS

∂σ−2
η

=
∂
(
g2µσ

2
µ + g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
)

∂σ−2
η

(A.70)

=
∂g2µσ

2
µ

∂σ−2
η︸ ︷︷ ︸

<0

+
∂g2jσ

2
ε

∂σ−2
η︸ ︷︷ ︸

<0

+
∂
(
σ−2 + σ−2

η + σ−2
ε

)−1

∂σ−2
η︸ ︷︷ ︸

<0

(A.71)

< 0 (A.72)

To show the estimated precision σ̂−2
η is increasing in σ−2

ε , we again apply the Implicit
Function Theorem to 4.17, but with more arduous algebra.



44 YIZHOU KUANG AND KRISTOFFER NIMARK

The derivative of the right-hand side is the same as above. For the left-hand side, the
derivative with respect to the precision of the private signal σ−2

ε is

∂LHS

∂σ−2
ε

=
∂
(
g2µσ

2
µ + g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
)

∂σ−2
ε

(A.73)

=
∂g2µσ

2
µ

∂σ−2
ε︸ ︷︷ ︸

<0

+
∂
(
g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
)

∂σ−2
ε

(A.74)

=
∂g2µσ

2
µ

∂σ−2
ε︸ ︷︷ ︸

<0

+
∂
[(
σ−2 + σ−2

η + 2σ−2
ε

) (
σ−2 + σ−2

η + σ−2
ε

)−2
]

∂σ−2
ε

(A.75)

=
∂g2µσ

2
µ

∂σ−2
ε︸ ︷︷ ︸

<0

+
−2σ−2

ε(
σ−2 + σ−2

η + σ−2
ε

)3︸ ︷︷ ︸
<0

(A.76)

< 0 (A.77)

A.10. Proof of Corollary 6. We want to find the estimated private signal follow a condi-
tional Gaussian distribution

ŝj | x ∼ N
(
x, σ̂2

ε

)
(A.78)

Intuitively, the estimated private signal should fill the gap between the true posterior and
the posterior implied by the estimated common signal.
The true individual posterior follows a Gaussian distribution

N
(
gµµ

j + gss+ gjs
j,
(
σ−2 + σ−2

η + σ−2
ε

)−1
)

(A.79)

On the other hand, based on (A.35) the individual posterior implied only by the estimated
common signal is

N
(
ĝµj + (gµ − ĝ)µ+ gss+ gjs

j,
(
σ−2 + σ̂−2

η

)−1
)

(A.80)

Therefore, to match the variance

σ̂−2
ε =

(
σ−2 + σ−2

η + σ−2
ε

)
−
(
σ−2 + σ̂−2

η

)
(A.81)

=
(
σ−2
η − σ̂−2

η

)
+ σ−2

ε (A.82)

To match the mean, we apply the Bayesian updating formula

gµµ
j + gss+ gjs

j =
σ−2 + σ̂−2

η

σ−2 + σ̂−2
η + σ̂−2

ε

·
(
ĝµj + (gµ − ĝ)µ+ gss+ gjs

j
)
+

σ̂−2
ε

σ−2 + σ̂−2
η + σ̂−2

ε

· ŝj

(A.83)

Plug in σ̂−2
ε and reorganize the terms, we have

ŝj = gµµ+ gss+ gjs
j (A.84)
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The variance in (4.18) is simply given by equating the posterior variance implied by s and
sj with the posterior variance implied by ŝ and ŝj.
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Appendix B. Additional Figures
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Figure B.1. Time series of informativeness of individual and common signals
about PCE inflation, GDP deflator and complete sample for GDP growth.


